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The exclusion process is an interacting particle system.

Underlying space S is a graph (V,E).

The default choice is the lattice Zd

configuration η = a point of {0, 1}V .

η = {η(x);x ∈ V }.
η(x) = 1, a particle at x

η(x)=0, site x is vacant.
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Transition mechanisms of particles.

1. at most one particle in every site.

2. A particle at x waits for an exponential time and attempts to jump

to another site y with probability p(x, y).

3. If y is vacant, particle moves to y; if y is occupied, then particle

stays in x and the attempt is suspended.

p(x, y) is the transition probability of a Markov chain on S.
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η −→ ηxy at rate p(x, y)

Ωf(η) =
∑
x,y∈S

η(x)(1− η(y))p(x, y)[f(ηxy)− f(η)].

T.M Liggett, Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, 276.

Springer-Verlag, Berlin, 1985

T.M. Liggett, Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren

der Mathematischen Wissenschaften, 324. Springer-Verlag, Berlin, 1999.
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{p(x, y)} is the transition probability of a Markov chain on S.

Extra assumptions on p(x, y).

E.g. p(x, y) = 1/dx if |x−y| = 1 and p(x, y) = 0 if |x−y| 6= 1.

There is no birth and death, the density of particles is preserved.

The Bernoulli product measure µρ is invariant (and ergodic).

Not easy to identify all invariant measures. symmetric or Z1 nearest neighbor,

or Z1 mean zero.

From now on, simple exclusion

initial measure = the Bernoulli product measure µρ.

(although the conclusions could be valid in a more general setting.)
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Simple exclusion process on a tree.

Td = regular tree of degree d.

Simple random walk on Td.

Fix a site as the root and the walker is at the root initially.

The walk waits for an exponential time with parameter 1, and moves

to a neighboring site with probability 1/d when the clock rings.

Mark a particle (called the tagged particle).

Goal: to study the motion X(t) of the tagged particle.
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X(t) behaves very much like a random walk on S,

except some suspensions due to collision with other particles.

ξt(x) = η(Xt + x)

ξt = {ξt(x), x ∈ Td}, the environment seen from Xt.

(ηt, Xt)←→ (Xt, ξt)
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II. New Results

1. Ergodicity of µ∗ρ,

2. LLN of |Xt|, where |x| = dist( x, o).

3. CLT of |Xt|.
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µρ = the Bernoulli product measure = initial distribution.

µ∗ρ = µρ conditioned on there is a particle at the root.

Proposition 1. For d ≥ 3, the measure ν∗ρ is invariant and ergodic

for (ξt)t≥0 and all ρ ∈ (0, 1).
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Theorem 2. For d ≥ 2, let (ηt)t≥0 on Td have initial distribution

ν∗ρ for some ρ ∈ [0, 1]. Then the position of the tagged particle

{Xt; t ≥ 0} satisfies a law of large numbers:

lim
t→∞

|Xt|
t

= (1− ρ)(d− 2)
∑
i∈N0

ip(i) =: v

Pνρ-almost surely. In particular, speed = (1− ρ)d−2
d in the case of

the simple exclusion process on Td.
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Theorem 3. For d ≥ 3 and ρ ∈ [0, 1), the tagged particle (Xt)t≥0

on Td satisfies

|Xt| − tv√
t

d−→ N (0, σ2)

for some σ = σ(d, ρ, p(.)) ∈ (0,∞) and v from Theorem 1.
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III Earlier Works on Zd.

lim
t→∞

X(t)

t
= (1− ρ)

∑
y

yp(0, y) a.s.

was first verified in two cases:

1) S = Z1 and p(x, x+ 1) = 1 (totally asymmetric).

2) S = Z1 and p(x, x+ 1) = p(x, x− 1) = 1/2
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Key step: to verify that the environment viewed from the tagged par-

ticle is stationary and ergodic.

Ergodicity of µρ can not be inherited automatically when µρ is conditioned on η(0) = 1.

Assuming translational invariance p(x, y) = p(0, y−x) for all x, y,

this was done by E. Saada in the following cases:

1) Zd, d ≥ 2,

2) Z1, p(x, x+ 1) + p(x, x− 1) < 1.

and by P.A. Ferrari

3) Z1, p(x, x+ 1) + p(x, x− 1) = 1.
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CLT (Kipnis 85, Kipnis & Varadhan 85).

Zt =
Xt − EXt√

t

is asymptotically normal if

1) S = Z1, p(x, x+ 1) + p(x, x− 1) = 1; or

2) S = Zd, p(x, y) = p(y, x) = p(0, y − x), irreducibility of the

random walk and
∑
x |x|2p(0, x) <∞.

But both excludes the case that S = Z1, p(x, x+ 1) = p(x, x− 1) = 1/2.

3) S = Zd,
∑
y yp(0, y) = 0. (Varadhan 1995)

4) S = Zd, d ≥ 3,
∑
y yp(0, y) 6= 0. (Sethuraman, Varadhan and Yau 1999)
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However, if S = Z1 and p(x, x+ 1) = p(x, x− 1) = 1/2, X(t)

is not a RW with a certain rate of suspension. It is subdiffusive.

Theorem. If the initial distribution is the Bernoulli product measure

µρ conditioned on η(0) = 1. Then Xt/t1/4 converges in distribu-

tion to the normal law with mean zero and variance
√

2/π(1−ρ)/ρ.

Furthermore

lim
t

var(Xt)√
t

=

√
2

π

1− ρ
ρ

.

Richard Arratia, The motion of a tagged particle in the simple symmetric exclusion system on Z,

Ann. Probab. 11 (1983), no. 2, 362–373.
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Sketches of Proof

Theorem 1. Ergodicity of the environment viewed from the tagged

particle, following the idea of E. Saada.

Theorem 2. Linear speed of the tagged particle, following the idea of

RW on tree by Russell Ryons. A new distance is introduced

Theorem 3. Central Limit Theorem of the tagged particle, following

the idea of Sethuraman, Varadhan and Yau (1999)
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Proof of Proposition 1.

reducing ergodicity of ν∗ρ from that of νρ.

S = {0, 1}V , S∗ = {η ∈ S, η(0) = 1}.

If ν∗ρ is not ergodic, find an invariant A ⊂ S∗, 0 < ν∗ρ(A) < 1,

A = {τxη, η ∈ A, x ∈ V }.

Then νρ(A) > 0, so νρ(A) = 1.
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B = S \ A is invariant, 0 < ν∗ρ(B) < 1, B = {τxη, η ∈ B, x ∈
V }.

Then νρ(B) > 0, νρ(B) = 1.

A and B are almost the same. Therefore one can pick a point from

A ∩B.

∃x,w ∈ V , τxη ∈ A and τwη ∈ B.

We will argue that τwηxy ∈ A and τwηxy ∈ B, a contradiction.
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For this we can find integers n,m, l and sites

y, z; x1, x2, · · · , xn; y1, y2, . . . , ym; z1, z2, . . . , zl

η(y) = η(z) = η(x1) = . . . = η(xn) = 0

x, y, z are located in pairwise different branches w. r. t. w in T d

w is connected to x via the path x1 ∼ x2 ∼ · · · ∼ xn,

connected to y via the path y1 ∼ y2 ∼ · · · ∼ ym and

connected to z via the path z1 ∼ z2 ∼ · · · ∼ zl.
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w
x

z

y

→
→
(a)

(b)

→
→
→
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Extend to Galton-Watson trees for the speed existence.

dimension drop?
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